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Diagram method for resolution limit calculation in laser
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In this work, we study the influence of optical processes on the resolution limit of laser microscopes. We
formulate rules of resolution limit calculation for all types of laser microscopes that employ a variety of
optical processes occurring in a sample. By replacing the field with creation/annihilation operators, we
develop a theoretical framework to unify image-forming formulas that cover all interactions between
molecules in the sample and the light excitation including the vacuum field. To determine some simple
rules for the evaluation of optical resolution, our theoretical framework provides a diagram method that
describes linear, nonlinear, coherent, and incoherent optical processes. According to our formulas, the
type of optical process decisively influences the resolution limit if no a priori information on the sample

exists.
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7 Introduction

In 1873, Ernst Abbe established the modern theory of
image formation in optical microscopy and derived the well-
known formula for the optical resolution, d = 1/2NA, which
corresponds to a frequency cutoff (resolution limit) of
2NA/2, where A is the wavelength of light and NA is the
numerical aperture of microscope objective®. In fact, classi-
cal microscopies, such as bright field microscopy”, phase
contrast microscopy”?, differential interference micros-
copy”, and dark field microscopy® essentially follow Abbe’s
theorem. Relatively new microscopy modalities, such as

relief contrast microscopy”, digital holographic microscopy®,

and optical coherence tomography” also obey Abbe’s rule.
Recently, laser microscopy systems based on a variety of
optical processes have been developed'” ™. Although
Abbe’s definition of resolution limit is still used as the stan-
dard, it is relatively unknown that the 2NA/A-limit can be
applied only to microscopies based on electric susceptibility
7P-derived optical processes, such as linear absorption (LA),
transmission, and reflection. Furthermore, considering the
three dimensional (3-D) optical resolution in transmission
microscopy, it is known that the missing cone exists in the
spatial-frequency domain', as long as the y®-derived optical
processes are used. When using higher order nonlinear

(@

susceptibility y“-derived optical processes (i = 2), the reso-
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lution limit may surpass 2NA/A and the missing cone can be
overcome'®. This implies that the higher order optical pro-
cesses, even fluorescence, which is a y®-derived optical
process, cannot be dealt with by Abbe’s formula. Indeed, the
frequency cutoff in fluorescence confocal microscopy is
ANA/IP.

In this study, we formulated the rules for the resolution
limit calculation of all laser microscopes that employ arbi-
trary optical processes. In our theory, the resolution limit
can be calculated by using the double-sided Feynman dia-
grams describing the time evolution of the density matrix. In
nonlinear optics, the Feynman diagram method was origi-
nally developed for the classification of optical processes and
the calculation of y'”. We extended the applicability of the
diagram method to the calculation of the resolution limit.
Our theory covers the Abbe’s formula as a special case of

U optical process. Linear, nonlinear, coher-

the lowest order y
ent, and incoherent optical processes can all be described by
the diagram that includes some arrows'®. We show that
each arrow corresponds to the 3-D pupil function, following
the rule we derived. The transfer function, which we will
define as “3-D aperture”, can be calculated by connecting all
3-D pupil functions in the diagram with convolutions.
According to our theory, without a priori information on the
sample, the type of optical process involved determines the

resolution limit.

2 Optical process: Feynman diagram
description

Many types of optical processes can be employed for opti-
cal microscopy, as shown in Fig. 1(a). All optical processes,
including coherent and incoherent ones, can be described by
double-sided Feynman diagrams'”'®. As an example, Fig.
1(b) shows the diagrams describing linear fluorescence
(FL). In general, optical processes are expressed by simulta-
neous plural diagrams. For example, in FL, three diagrams
exist that contribute to the optical process'. In an incoher-
ent process such as FL, both the vacuum field and the laser

beam are involved. Because solid arrows are generally used
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(a) Schematic of light-matter interaction. (b) Exam-
ples of Feynman diagrams (three diagrams for FL)

Fig. 1
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to represent the excitation field (real photons) in a diagram,
we use a dotted arrow to represent the vacuum field. A left-
pointing wavy arrow emerging from the ket side (left side)
corresponds to the signal field.

In this section, we analyze the fundamental mathematics
underlying the physical phenomena by using the quantum-
optical notation to deal with all optical processes, including
incoherent processes. Before dealing with microscopy, we
analyze the simple case where the creation and annihilation
of the excitation photons occur in free space with the transi-
tion of molecules (including virtual transition), which results
in the creation of a signal photon from the molecule and its
annihilation at the detection position (see Fig. 1(a)). In a
diagram, left- and right-pointing arrows correspond to cre-
ation operators ¢'(x) and annihilation operators é(x), respec-
tively, where x = (x, y, z2). We establish the drawing rule of the
wavy arrow for the signal field, in which the arrow for the
signal invariably emerges from the ket side to avoid the
redundant addition of diagrams. The wavy arrow corre-
sponds to ad; (x) (see Appendix). We define the interaction
operator Ein (%) as the product of all operators in the diagram
of interest and the excitation operator Ee(X), i.e., En (¥) =
Ee(X) @ (X). The excitation operator for the i-th order opti-
cal process is composed of ¢ creation/annihilation operators.

Some typical diagrams are shown in Fig. 2, where the
optical processes are categorized in terms of the order .
Although some optical processes are depicted by simultane-
ous plural diagrams, one of them is described as a represen-
tative diagram for each optical process. Note that the dia-
grams representing identical optical processes indicate the
same optical resolution. The inner dotted line indicates the
longitudinal relaxation, which does not influence the optical
resolution. In incoherent optical processes, the vacuum field
is involved as a local oscillator and one of the excitation
fields, while in coherent optical processes only the laser

beams are responsible for the excitation. In coherent optical
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processes, the presence of the local oscillator depends on
the type of optical process.

3 Notation system

First, we consider the phenomenon in free space. Fig. 1(a)
represents a laser beam incident on a molecular ensemble

® where the light-matter inter-

with nonlinear susceptibility y
action occurs. Then, the molecular ensemble radiates the
signal, which propagates to the detector position x4, where it
is annihilated. We assume the laser beam to be in coherent
state |tx>. We also incorporate the vacuum state around the
sample |0) into the formulation (see Appendix). Under the
excitation condition |a>|0> , the expectation value of the sig-
nal created at x and detected at X4 can be expressed as (0|(a]
7B () (%) |r}|0). For example, in LA, by using the equa-
tion Eiwe(x) = d.(x)dg (x) with d.(x) acting on |er) and dq (x)
acting on |0), the normalizations (e¢|o)= 1 and (0/0) = 1, and
the ordering rule of operators defined in Appendix (symbol

: 1), the expectation value mentioned above becomes

(O] e 2 6o (0ca) s ()£ 2| 0)

=2 (o] ()] ) (0] o (xa ) 5 (x)| 0)
=1V (X) G(xa — X), @

where G(xq—x) denotes the Green's function for the signal
photon propagating from X to xq and «(x) is the complex
function obtained from the equation d,(x)|a) = a(x) |e). In
Eq. (1), we used suffixes « for the laser and 0 for the vac-
uum to clarify the state that the operator acts on. In free
space without lenses, although dy(x) still corresponds to

dsig(X), do(xa) is not equal to deo(Xa):

a5 (X) = a3 (x) )
ao(Xa) = [a( fa)e™*™ ™ d® fy. ®))

Considering the interaction between the signal field
described by Eq. (1), which is generated from the vacuum
field, and the excitation laser beam itself, which acts as a
local oscillator, the expectation value of the intensity

observed by the detector at x4 is given by

(O] o i (00 + 2 B 03 )| £ 0)
~ (0f{or|{dz (xa) e (x0)
iV (%) i (00 do (%) @5 (%) + hc.f )] 0)
= |a(xd)|2 +ixVo (x)a(X)G(xq — X) +c.c. @)
where the fourth term was neglected and the Gouy phase

shift -7 added in the vicinity of the focus of the local oscilla-

tor was considered.
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4 Microscopy model description

We now define the imaging system (laser microscopy) in
our model. The laser microscopy is composed of an excita-
tion system that focuses the laser beam onto a sample and a
signal-collection system that gathers the signal generated
from the sample. A schematic of laser microscopy with the
coordinate system is shown in Fig. 3. In the following, we
assume a 3-D sample-stage scanning, rather than laser scan-
ning, which, however, does not influence the optical resolu-
tion. In laser microscopy, one or two excitation beams are
usually employed to generate the signal. The electric field of
the signal is emitted from the molecule excited by the elec-
tric fields of the excitation beams, and the signal field propa-
gates through the signal-collection system. The signals are
acquired point by point with a photodetector to reconstruct

the 3-D image.
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Fig. 3 Schematic of laser microscopy with coordinate sys-
tems

For simplicity, the first Born approximation is applied to
understand the true nature of the optical resolution. In this
approximation, multiple scattering and depletion of the beam
are neglected, which usually holds true for nearly transpar-
ent samples, such as biological specimens. If multiple scat-
tering and depletion are intense, the image acquired will be
deformed to some extent. We assume that both the excita-
tion and signal-collection systems are 1-X magnification
systems, which does not change the essence of the image-
forming properties. In our model, the scalar diffraction the-
ory is employed. The linear or nonlinear susceptibility distri-
bution y?(x, y, z) in the sample acts as an object in the
imaging system. The excitation electric field induces the

polarization, which emits the signal electric field.

5 Quantum image-forming theory

The interaction operator Ey(x) is the product of all opera-

tors in the diagram of interest corresponding to the excita-
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tion fields (laser, vacuum, etc.) and the signal field. In
Appendix, the creation ¢*(x) and annihilation é¢(x) operators
for the excitation and signal fields in real space, respectively,
are found from the inverse Fourier transform of the product
of the 3-D pupil function, P(f), and the operators in wave-
number space, ¢ (f) or d¢(f). When the sample-stage dis-
placement X' = (¥, y, ) is zero, the operator for the polariza-
tion distribution in the sample formed by the excitation
objective is expressed by ¥ E«(X), where we presume that
the electric permittivity &, is unity: &= 1. As mentioned above,
Ew(x) is the operator composed of the product of the opera-
tors in the diagram of interest except for ad, (x). The expec-
tation value of the amplitude of the signal generated at x in

the sample and detected at x4 is represented by
<0|ex <O€|}((1) Eim(x)dcol(xd) |a>ex |0>
=(0],, (| x™ tEe(x) ool (Xa) 5 ()| ) |0), G)

where all operators appearing in the diagram and d..(Xq) are
defined in Appendix; the excitation state |oz>ex is also defined
in Appendix. The signal emitted from a single point x in the
sample forms the electric field distribution, i.e., the ampli-
tude spread function (ASF), at the detection position Xq:

ASEul(Xd - X) = <O dcol(xd)dsjrig(x)|0>- (6)

Integrating Eq. (5) over the object space, the total amplitude

of the signal at xq becomes
(0, <a|” J’ 2960 Endeata)idx|a)_[0). (@)

In addition to the signal, we need to consider the local
oscillator forming the electric-field distribution in the detect-
ing space. For coherent optical processes, one of the excita-
tion laser beams becomes the local oscillator that forms the
electric field distribution through the excitation and signal-
collection systems. For incoherent optical processes, the
vacuum field around the sample acts as a local oscillator
reaching the detecting space through the signal-collection
system. Considering the interaction between the signal field
and the local oscillator, the intensity observed at the detect-
ing point X4 is given by

(0] {efnxor+ [ ] 2700 B 00ks x2it :
|}, 10), ®

where the operator for the local oscillator di,(Xq) is intro-

duced and the Gouy phase shift of -7 for the local oscillator
is considered. The operator di,(Xq) becomes dioq) (Xa) acting

on | @) ex Or diow (Xa) acting on

0> depending on the optical
process. Note that, while some of the coherent optical pro-

cesses are not involved in the local oscillator, which is the
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vacuum field, in this case, the contribution of the local oscilla-
tor inevitably vanishes because of the formulas dj,)(Xa) |0> =

0 and <O dﬂ,(v) (Xd) =0.

Taking into account the sample-stage displacement X, we

rewrite Eq. (8) as

0l {e:

2

i, (xq) + Ijjx(i)(x - x')E‘im(x)flcm(xd )d®x|
o)., [0)- (9)

To discuss the resolution limit, we consider confocal micros-

copy, which has the largest frequency cutoff derived from a
specific optical process. The image intensity acquired by

confocal microscopes can be expressed as
Ix")=

(0], (e

2

—idi, (0)+ JJ.J.)((i)(x — X" Ein (0) deat (0)d®x]
|a>ex |0> ’

where 0 means Xq4= (0, 0, 0), indicating the detection position.

(10)

6 Image-forming formulas for each optical
process

We give some examples of the image-forming formulas for
confocal microscopy with a variety of optical processes. We
start with Eq. (10) for all optical processes, including linear,

nonlinear, coherent, and incoherent ones.

(1) Coherent optical process

In coherent optical processes, the presence of local oscilla-
tors depends on the optical process. For example, in LA,
stimulated Raman gain (SRG), stimulated Raman loss (SRL),
and stimulated emission (SE), the local oscillator and signal
interfere at the detecting position. By contrast, in sum fre-
quency generation (SFG), difference frequency generation
(DFG), and third-order harmonic generation (THG), the sig-
nal does not interfere with the excitation laser beam because
the latter can be blocked with a filter by using the wavelength
difference. In coherent anti-Stokes Raman scattering (CARS),
two signals, namely the CARS and four wave mixing (often
referred to as non-resonant back ground), interfere, causing
the non-resonant background to act as a local oscillator.

For coherent optical processes with local oscillators, Eq.

(10) becomes
Teqo (x") = |00 100 (O)f
+ iafo(l)mg(l)(O)Ijjx(i>(x = X") Eex (X)hoot (—x)d°x
an

+c.c.,



Nikon Research Report Vol.1 2019

where the equations (0| de(0) a3, (X)]0) = ASFui (-X) =
hea(=X), oy (0) |02) ex = oy oy () | @) ex, ex (x| ex)ex = 1, and
<0|0> = 1 were considered and the fourth term was neglected;
the scalar function Ee(x) = o (o] } Ee(X) |er) ex indicates the
product of i ASFs formed by the excitation beams. The ASF
of the collection system ASF., (X) = /., (X) includes informa-
tion on the signal wavelength and the NA of the signal-col-
lection system. Note that ASF,q (0) = /) (0) includes the
contributions of the NA of both the excitation and collection
systems and the excitation wavelength. Because the first
term in Eq. (11) is a constant, the second term determines
the resolution limit. We refer to the function Eex(X) %co(=X)
=h(-x) as the ASF of the total microscope system and its
Fourier transform corresponds to the 3-D aperture. In this
case, the 3-D aperture is often referred to as the weak-object
transfer function (WOTF)'?. The complex constants tex, texz,
etc. correspond to the laser power amplitude, and /ey (X),
hexz (X), etc. include the information on the excitation wave-
length and the NA of the excitation system.

For coherent optical processes without local oscillators,

Eq. (10) becomes
1) =|[ [ 270 = ) B a1 12

where the first term (0] diow (0) dise) (X) |0), which cannot be
observed, was neglected; the second and third terms vanish
because the numbers of the creation and annihilation opera-
tors acting on |0) are different, and only the fourth term
remains. In Eq. (12), we use the equation dc, (0) 4, (0) =
a1 (0) deot (0) + C (const.) originating from the commutation
relation [deq (0), iy (0)] = [|Peot (fo)|* d° f4 (see Appendix),
which results in the part C{0
the Green's function (0| dsg(x2) a3y (1) |0) propagating from x;
to X» is not related to the physical phenomenon. We also use the
relation |0) (0] = 1. As mentioned above, the ASF of the total
system, ASFr, is represented by 2 (-X) = Eex (X) /e (- X). Note

dss(%) @2, ()|0) vanishing because

that grating objects with grating pitch finer than the ASFr
cannot be resolved by microscopes using coherent optical
processes without local oscillators. Consequently, the ASFr

is well-defined indicator of the resolution limit.

(2) Incoherent optical process

In incoherent optical processes such as FL, two-photon
excited fluorescence (TPEF), and spontaneous Raman scat-
tering (Ra), the annihilation operator for the vacuum field
emerging from the bra side in the diagram d...(x) (see
Appendix) is essential for E.(X). In incoherent processes, the
vacuum field acts as the local oscillator. We define the

operator E‘ex(l) (x) as the product of all operators in the dia-
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gram excluding duac(X), i.6., Eex(X) = Eexqy(X) dvac(X). For an
incoherent optical process, Eq. (10) reduces to the well-

known image-forming formula:
Lic(x") = (0] dio (0) iy ()| 0)
2 [[im {6~ x| ASFo @ (- f
13)

In Eq. (13), the scalar function Ee(X) = e <oc| CEeap®) |(x> ex
is introduced; the relation Eeq(X) = |ASFexq(X)[* is used
because Eeq (X) is inevitably composed of the same number
of dex(X) and ag (x) in incoherent optical processes; and the
commutation relation [Gc(0), disey )] = [V*(fa)|Peat (F2)[* @ T4
= 0 (see Appendix) and the formula |0)(0| = 1 are utilized.
Note that Im{y®(x)} is a negative function. Because the vac-
uum field is never observed, the first term can be omitted.
The point spread function of the total system involving an

incoherent optical process is [ASFexq (<) [*/col (= X)|* = (= X).

7 Redefinition of the resolution limit

In our theory, all optical processes, including linear, nonlin-
ear, coherent, and incoherent ones, can be dealt with consid-
ering the same framework. For coherent processes, only the
real field is applied as the excitation field, while for incoherent
processes, one of the excitation fields is the vacuum field.

To evaluate the resolution limit of all microscopy modali-
ties, we define the 3-D aperture A(f) as the Fourier trans-
form of the ASF of the total system ASFr represented by
h:(-x). The physical significance of the 3-D aperture is the
rate of Fourier components in the object, acquired through
the microscope system. In microscopy with a local oscillator,
the 3-D aperture is derived from the Fourier transform of
the second term (one of the cross terms) of Eq. (10), as
;(6 (f)A(f); in this case, the Fourier transform of the third
term is merely the complex conjugate of the Fourier trans-
form of the second term, which means that the third term
does not contain additional information. In microscopy with-
out local oscillators, only the fourth term remains, and its
Fourier transform is proportional to the autocorrelation of
},(\(T)(f)A(f). Furthermore, because no local oscillator is pres-
ent, the optical transfer function (OTF) cannot be defined,
resulting in some image deformation. Because the spatial
frequency outside the 3-D aperture can never be acquired,
the 3-D aperture itself is the most appropriate criteria to
obtain the resolution limit.

While for incoherent processes the OTF can always be
defined, for coherent processes, it can be defined only if the

local oscillator exists. However, the 3-D aperture can be
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defined even in the absence of a local oscillator. For micros-
copy with the local oscillator, two types of the OTFs are
defined, i.e., ones for the real and imaginary parts of y® (x).
By taking into account the second and third terms in Eq.
(10, the OTF for the real part of ?(x) becomes OTF; (f) =
iA(f) -{A*(~f). Similarly, the OTF for the imaginary part
can be expressed as OTF(f) = -A(f) -A*(- ). Although
7% (x) is generally a complex function, in most cases y? (x) is
either the real function or the pure imaginary function. In this
case, OTF; (f) and OTF;(f) become well-defined and useful
concepts. However, even when the OTF is not defined, the
3-D aperture is still the best indicator for the resolution limit,
because the information outside the 3-D aperture cannot be

acquired.

8 Rules of diagram method

As described above, in all optical processes, including
incoherent and coherent, regardless of the presence or
absence of the local oscillator, the 3-D aperture can be
expressed by the Fourier transform of %:(-x). The expres-
sions for the coherent and incoherent optical processes can
be unified using the diagram method. From the Fourier
transform, we obtain the rule that the 3-D aperture of confo-
cal microscopy with a certain optical process can be calcu-
lated by convolving all 3-D pupil functions that correspond to
the arrows in the diagram, following the correspondence
table below”". Note that, in the table, we rewrite Pooi(f) 6. (| ~fso)
as P.,i(f), which has delta-function characteristic in the radial

direction.

Table 1 Correspondence between pupil functions and the

arrows in the diagrams

Excitation | Excitation | Vacuum Signal
arrow | ——— | +——— | s===m- -+ | v
Pupil function | Pex (=F) | P& (f) | P& (=f) | Pea (F)

All optical processes can be described by the diagrams,
which were originally developed to classify and count the
right amount of interactions and estimate the amplitude and
phase of the nonlinear susceptibility in the interaction of
interest. We discovered one more application of the dia-
grams, i.e., calculating the 3-D aperture of microscopes that
employ the optical process described by the diagram, where
each arrow corresponds to a 3-D pupil function: the 3-D
aperture can be computed by connecting all 3-D pupil func-
tions in a diagram with convolution. The frequency cutoff of

the 3-D aperture defined above determines the resolution
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limit of the microscope. As long as the optical process of
interest is employed, the resolution limit cannot surpass the
frequency cutoff determined by the optical process, regard-
less of how well the system is devised. We can prove the
following theorem: “If there is no @ priori information on an
object in far-field microscopy, the resolution limit determined
by optical process cannot be surpassed, no matter how well

the microscopy is devised.”

9 Results and discussion

As stated above, the maximum possible resolution limit is
determined by the type of optical process employed. For
illustration, Fig. 4 shows the calculation results of the 3-D
aperture for CARS, SRL, SRG, and THG microscopy®?.
With identical excitation wavelengths, the resolution limits
of SRL and SRG microscopy are the same, while that of
CARS microscopy is higher. The 3-D aperture of THG
microscopy exhibits peculiar properties, whereby the value
of the origin in the spatial frequency domain is zero, result-
ing in the disappearance of the uniform part from the image.

According to our theory, the upper limit of the frequency
cutoff determined by the optical process cannot be sur-
passed. Although the optical resolution may be different for
different microscopy modalities, the maximal frequency
cutoff is the same if the same optical process is employed.
The modality with the maximal frequency cutoff is confocal

microscopy. The frequency cutoff of its 3-D aperture deter-

(a) CARS

Acars(f) = Pud=DNOEANSE(-NSELN
-

(b) SRG
Aspa(f) = BiN@RA-NBEA-NBRLL)
An, m

A/
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Lo 8 1, ¢

A/l “Anfh oy

-4n/h, “Anfh e
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A () = PuCNOELNGRANBEL)  Apyo(f) = BCNORNBRLNIDRLS

Anlhen - b ] -
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Fig. 4 Calculated 3-D apertures for (a) CARS, (b) SRG, (c)
SRL, and (d) THG. n is the average refractive index
in the sample. The NAs of both excitation and sig-
nal-collection objectives are 0.9 (dry). For CARS,
SRG, and SRL, the vibrational frequency (1/Aeq—1/Acx)
is assumed to be 2850 cm™.
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Fig. 5 Calculated 3-D apertures for (a) LA, (b) FL, (c) SHG,
and (d) CARS. The upper and lower rows are for
transmission and reflection types, respectively.

mines the upper limit by the optical process of interest.
‘While each optical process possesses its own inherent upper
limit, the NA and wavelength also influence the resolution.
Only spatial frequencies within the 3-D aperture can be
imaged. Fig. 5 shows the calculated 3-D apertures of confo-
cal microscopy in transmission and reflection modes
employing LA, FL, second-order harmonic generation
(SHG), and CARS. In reflection mode, although the OTF
does not exist (no local oscillator), the 3-D aperture can be
defined. In Fig. 5, the NAs of both excitation and signal-col-
lection objectives are assumed to be 1.2 (water immersion),
and 4 (800 nm) represents the excitation wavelength. In
CARS, where two excitation beams (pump and Stokes) are
used, we assume that 1 is the pump wavelength (800 nm)
and the vibrational frequency is 2,850 cm?, which means
that the Stokes and CARS wavelengths are 1,036 nm and
651 nm, respectively. For simplicity, in FL, we assume that
the fluorescence wavelength is the same as the excitation
wavelength.

Next, we consider the OTFs of SRL and CARS micros-
copy. In the previous section, we defined the OTFs of the
real and imaginary parts of y® as OTF.(f) = iA(f) —-iA*(-f)
and OTF; (f) = —A(f) —-A*(-f), respectively. This holds true
for SRL because the local oscillator is the pump beam itself,
which causes a Gouy phase shift of -7 in the vicinity of the
focus of the excitation beam in the sample. In CARS, how-
ever, the non-resonant background, whose y® is a positive
real number, acts as the local oscillator. The constant before
the local oscillator becomes unity in CARS because the non-
resonant background is generated from the sample with an
initial phase of zero. Here, the non-resonant background is
assumed to be spectrally flat and have homogeneous inten-
sity over the sample. In this case, the OTF of CARS micros-
copy changes as follows: OTF; (f) = A(f) + A*(~f) and OTF; (f)
= {A(f) —iA™ (-F). If A(f) = A* (-f), OTF; (f) in SRL and
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OTF; () in CARS vanish, but if A(f) #A* (-f), they remain.
Consequently, in SRL under the condition A(f) #A* (-f),
the real part of y®, which also contains cross phase modulation
(XPM, an optical process), appears in the image. Similarly, in
CARS under the condition A(f) #A™ (-f), the imaginary part

® is observed.

of y

We now consider nonconfocal microscopy, which is nor-
mally used to obtain a high signal intensity. Although in
nonconfocal microscopy the detector is normally placed at
the plane conjugate to the pupil of the collection objective,
we consider the microscopy in which the detector is placed
at the image plane conjugate to the sample plane. Note that,
in nonconfocal microscopy, the image does not change
regardless of the detector position. Therefore, to simplify the
equation, we calculate the intensity value at a certain sample-
stage displacement (x, ¥, 2) by three-dimensionally integrating
the signal intensity in the detection space. The image intensity

acquired by nonconfocal microscopy is proportional to 9%

16 [ leatoa) + [ [ 18 = x0[ B&.(9) s = 0

= Jjj‘Elo(xd)‘z d*xq

B[ [[ #8030 [ B0 Jha-odx e

d P
x4

14)

where E),(Xq) is the local oscillator, ¢ is -7 for SRL and unity
for CARS, and [ES (x)] represents the excitation field includ-
ing the pump and Stokes beams. In Eq. (14), the fourth
term was neglected and the relation [f B (Xa) feor (Xa—X)dXq
~ EF hea(-X) was used, assuming that Ej,(Xq) = Ei Heo (Xa) if
NA« = NA.. The first term in Eq. (14) is a constant, which
vanishes with lock-in detection in SRL, and can be eliminated
on the computer in CARS. The cross terms (second and
third terms) form an image.

We now consider the influence of NA on the OTF in
CARS and SRL microscopy. By considering the excitation
fields E,(x) ES(X) E,(x) in CARS and E,(x) Es"(x) Es (x) in
SRL, we analyze the key factor & (-x) = [ES (X) 1/ (-x) that
determines the optical resolution, where E, (x) and Es (x) are
the electric field distribution in the sample for the pump and
Stokes beams, respectively. Note that [ES (x)] is formed by
the excitation system, while /., (-x) is formed by the signal-
collection system. In other words, the Fourier transforms of
E,(x) and Es(x), i.e., P,(f) and Ps(f), are the spherical-shell
shaped pupil functions of the excitation system, determined
by the wavelength and NA, while 4. (-x) is the Fourier
transform of the pupil function of the signal-collection system
P.i(f). Moreover, note that the radius of P.,(f) of SRL dif-
fers from that of CARS. The 3-D aperture A(f), i.e., the

Fourier transform of %.(-x), is calculated by convolving the
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Fig. 6 OTF for CARS, SRL, and XPM. n is the average
refractive index in the sample. The wavelengths of
the pump and Stokes beams are 800 and 1036 nm,
respectively. The vibrational frequency is assumed to
be 2850 cm™. (@) NA«x = 1.2, NAco = 1.2. (b) NA =
1.2, NAq = 0.55.

four pupil functions: P,(-f) @ P& (f) ® Ps (-f) ® P.(f) for
SRL and P,(-f) ® P& (f) @ P, (-f) ® Peal(f) for CARS. There-
fore, if NA« > NA.,, the 3-D aperture A(f) becomes asym-
metric, i.e., A(f) #A4* (-f), resulting in the appearance of
XPM in SRL microscopy images. On the other hand, if NA.
= NA. (or even NA« < NA ), the XPM disappears from the
image. Note that, if the three focal points (excitation system
for the pump beam, excitation system for the Stokes beam,
and signal-collection system) do not coincide with one
another in the sample, XPM emerges even in the case of
NA« = NAg.

Fig. 6 shows the NA dependency of the OTF in CARS and
SRL microscopy, where we assume that, in SRL microscopy,
the wavelengths of the pump and Stokes beams are tuned to
a full-resonant vibrational level, and in CARS microscopy,
they are slightly detuned to observe Re{ x&ks}. Under the
same excitation conditions, CARS microscopy exhibits a
slightly higher optical resolution than SRL microscopy owing
to the difference in the signal wavelength. In SRL micros-
copy, if NAe > NA,, the OTF of the XPM appears, which is
usually undesired. Because the XPM point spread function,
calculated by Fourier transforming the OTF, becomes an odd
function in the z-direction, the XPM image seems a differen-

tial image with respect to z.

10 Conclusion

We have applied the Feynman diagram technique to calcu-
late the laser microscopy resolution limit. This method
allows the description of linear, nonlinear, coherent, and
incoherent interactions. By performing the calculations,
simple rules for the evaluation of 3-D apertures were

derived. The 3-D aperture can be calculated by connecting
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the 3-D pupil functions corresponding to each arrow in a
diagram with convolution. Our theory implies that, without
a priori information on the sample, the type of optical pro-

cess determines the resolution limit.

I ’ Appendix

The plane wave of a laser beam can be assumed to be in a
coherent state with the frequency f = (%, £, 1,)

|a>ex = feg(/)|a>f ’ (Al)

where « is a complex number and |n> ¢ is the number state
for the plane wave with frequency f (wavenumber k = 2zf).
Because the excitation laser beam is focused onto the sam-
ple by the excitation objective, the corresponding excitation
state is represented by the direct product of all modes
restricted by the NA and wavelength:
g
’ n§0ﬁ|n>f ’

where P represents the 3-D pupil function for the excitation

la), = *2)

objective. In coherent optical processes, we consider only the
coherent states for laser beams. If two different laser beams
(ex1 and ex2) are employed for the excitation, the state rep-
resenting the excitation condition becomes |a> exl |a> ex2-
For incoherent optical processes, we incorporate the vac-
uum state |0> into the formulation as one of the excitation
lights. For this purpose, we consider the direct product of
the coherent state and vacuum state |a>ex|0> as the excitation
condition. The vacuum state |0) contains all modes |0) with

frequencies f :

|0} =11]0), - (A3)

This vacuum state exists around the sample. Note that the
contribution of |0>f in |a>f is negligible because of the normal
order product for the operator, which will be explained later.

We introduce the basic idea of the annihilation and cre-
ation operators in real space, d(x) and 4" (x), using the 3-D
pupil function P(f):

a(x)=[P(f)a(f)e* " d*f, (A4

@ (x) =[P (f)a (fle ™ df, (Ab)

where d(f) and ¢'(f) are the annihilation and creation
operators in the wavenumber domain, respectively. Using
this underlying concept, we can define the annihilation
operators in real space for the excitation laser field de(X),
the vacuum field around the sample d...(X), the local oscilla-
tor field derived from the vacuum field di,) (x), the local

oscillator field due to the excitation laser field d,qg (x), the
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signal field emitted from the sample ds,(x), and the signal

field collected into the detector d..(X) as

Gex (X) = [ Pu(£) a(£)e*" " d* £,

() = [V (F)S(| | - fig) & F)e™* " *d° 1,
Qow(Xa) = [V (f) Pt ( fa) a( fa)e* 1 d* o,
aio0)(Xa) = [ P (f) Pt ( fa) a( fa)e™ 4 d* £y,
a5 () =[5, (| | - fug) a( £)e**d"

Geol(Xa) = [ Poot(fa) @ fa)e™*™ >4 d” £y, (A6)
with
Pu(fo, £y, ) = PR (fe, )P (fur 1, 1),
1
6| F|— feig ) =6 (| F|— fog )+ ————,
(1F]-fue) =5 (| F]- £ )*,7,(|f|-fsig) A7)

where P.,(f) is the 3-D pupil function for the excitation sys-
tem expressed by the product of the 2-D pupil function for
the excitation system P& (£, f,) (including laser beam profile)
and the spherical shell truncated by NA P (f,, £,, £,), which
has delta-function characteristics in the radial direction. V(f)
represents the complex random function whose modulus is
one, P (f) is the 3-D pupil function for the signal-collection
system, which is the partial sphere with the modulus of one,
and f, is the modulus of the wavenumber for the signal
field. Note that £, takes into account the refractive index of
the sample. The information on the aberration is included in
the pupil functions.

We now establish the operators ordering. The operators
dex(x) and diog (Xa) act on |0} o, and the operators dyc(X),
diow (Xa), dsig®), and deq () act on |0). For the operator order-
ing, we introduce the symbol : :.In the area between the sym-
bols : i, the order of the operators is rearranged as follows:
® Rule for the operators acting on | ot)ex

Normal ordered product: creation operators are placed to

the left of the annihilation operators in the product.
® Rule for the operators acting on |0)

Anti-normal ordered product: annihilation operators are

placed to the left of creation operators in the product.
The special ordered product defined above means that the
vacuum field cannot be observed, except when considering
the propagator represented as the vacuum expectation value,
such as <0| Gea(Xa) @Sz () |0> . Note that we ignore the vacuum
expectation value (0| diow (Xa) dioe) (Xa)|0) , which cannot be
observed in practical experiments.

To unify the framework for coherent and incoherent opti-
cal processes, the classical field is replaced by the operator.
Then, the operator acts on the bra or ket describing the
excitation condition. Because the vacuum field inevitably
exists around the sample, we always utilize both the coher-

ent state for the laser and the vacuum state as the excitation
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condition, such as |er) ex

()>. For example, using the relation

dex(f)| @)1 = a|a) 1, the calculation is as follows:

Gex(X)| ) =] Po() a(£)e** " *d* | ar)
=[P (f)a e gt |a>
=a ASEX(X)|a> ,

ex

ex

ex

(A3)

where ASF«(x) is the ASF formed by the excitation laser

beam onto the sample through the excitation objective. The

calculation related to the vacuum field is as follows:

(0]éen (xa)al (X)[0) = [P (£)57 (| | - fug )€ 4 70d £
= ASF.q(xa = X),

(A9)

(0] drac (X)) (Xa)[ 0) = {J\V( ) Pa(£)5(| | = fug )€ 4 £ }

={ASFa(xa - )}, (A10)
(0] i ()L (%0)[0) = (0] der (%0 )il (0] 0))
= {ASFua(x - )}, (A1D)

where ASF.,i(Xq) is the ASF formed by the signal field onto
the detector through the signal-collection objective. Eq. (A9)
represents the propagator for the photon that is created at x
and annihilated at xq. In Egs. (A10) and (Al1), the left-hand
side, which appears to be the light propagation from X4 to X,
physically indicates that the light expressed by the complex
conjugate propagates from X to Xq.

For the convenience of formulas transformation and sim-
plification, we calculate the commutation relation between

the annihilation and creation operators in real space:

[dcol(xd)rdzol(xd)]
= dcol(xd )&Iol(xd) - &Zol(Xd )&col (xa)
=JPa(f) a(f)e™ " d fi| P (f,) @ (f2)e """ d° f,
—[Pa(fy) @ (f2)e 2 4@ f,[ Py (1) a( f1)e*" " d” f;
= [[Ra(fi)Pa( fz){d( foa* (f,)-a*(f,)a( f1)}€i2”( imtags fid* £,
= [[ Ba(f)Pa( f)[G(f1),a" () [e? "% d 0% £,
= [[Pa(f)Pa( f)8(f — f2)e® "% g fi4° 1,

= [|Ra( ) @ f, (A12)

where the commutation relation in frequency domain
[@ (f), @* (f2)] = 6(f1—f,) is used. Likewise, we obtain
[ et (Xa), iy (xa) ] = [V (£a) | P (£ d° £
=0,
where the random phase nature of V*(f) is used.

(Al13)
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